1. [image: image1.png]Ans:

II.

I1I.

IV.

VL

Among all live nodes, we select the node with lowest g(n).

Among all live nodes, we select the node with lowest h(n).

Hill-Climbing searches the best of all descendants, but “Best First Search”
searches the best of all live nodes. So Hill-Climbing is local optimal.
“Depth-First Search Algorithm” is not complete, because it may fail in
infinite-depth spaces. “Breadth-First Search Algorithm” is complete.
“Depth-First Search Algorithm” space complexity is O(h).

“Breadth-First Search Algorithm” space complexity is O(b").

It is A* search. This algorithm always finds optimal solution. But it’s space

complexity is exponential.

Tree searching strategies:
We can model the searching problem as a tree. Any internal node has at most b children. We define 3 functions.
g(n) = the path length from the root of the decision tree to node n.
h*(n) = the optimal path length from node n to a goal node.
h(n) = estimation of h*(n), h(n)≦h*(n) for all n
(Please use this 3 functions to answer the following question)
I. What node does “Breadth-First Search Algorithm” search first?
II. What node does “Best-First Search Algorithm” search first?
III. Hill-Climbing and Best-First Search are very similar, what is the difference?
IV. We say a searching algorithm is complete, if there exists a solution, this algorithm will eventually find it. Is “Depth-First Search Algorithm” complete? Is “Breadth-First Search Algorithm” complete?
V. If the tree height is bounded by h, what is the space complexity of “Depth-First Search Algorithm” and “Breadth-First Search Algorithm”?
VI. If we search the node which h(n) + g(n) is smallest for all node on the open list. Please analyze the pros and cons of this algorithm.
[image: image17.png]Consider an algorithm that calls O(n) subroutines each taking linear time. The first call can
produce O(n) output which can be concatenated to the original input and used as input to the
next giving it time O(2n) and sofort. The total time used is then Y | _; 2*n which is clearly
not polynomial. If however we only call a constant number of subroutines the algorithm will be
polynomial.

2. Please list the differences and similarities between divide-and-conquer and prune-and-search.
Ans:

Similarity
· Both of them divide the original problem into sub-problem(s) with a smaller size.

· The algorithms run iteratively or recursively.

· When the size of the sub-problem is small enough, the sub-problem can be solved easily in a constant time.

Dissimilarity
· The prune-and-search strategy reduces the size of the problem in each iteration, while the divide-and-conquer strategy does not.

· In general, the divide-and-conquer strategy requires a merging step in each iteration, while the prune-and-search strategy does not.

· The prune-and-search strategy ensures the final time complexity is the same as that in each iteration, while the divide-and-conquer strategy does not.
3. Dynamic programming
The 0-1 knapsack problem is defined as follows:
Given positive integers P1, P2, … , Pn, W1, W2, … , Wn and M.
Find X1, X2, … , Xn, Xi = {0,1} such that
[image: image2.wmf]å

=

n

1

i

i

i

X

P

is maximized subject to
[image: image3.wmf]å

=

n

1

i

i

i

X

W

≦M.

I. Give a dynamic programming method to find an optimal solution of the knapsack problem.

II. What is the time complexity of this algorithm?

III. According to II, does this algorithm run in polynomial time? Why or why not.

[image: image4.png]AnS:

. We let f(i,)) to be the optimal solution for item 1~i and maximum weight j.

Then f(i,j) =0,ifi=0o0rj=0
f(i,j) = max {f(i-1,j), f(i-1,j-wi) + pi}

f(n,M) is the optimal solution, and we can use dynamic programming
strategy to reduce computation time.

II. Since the table size is O(nM), and every entry in the table is computed in
O(1) time, the time complexity is O(nM).

III. No, because we only need log M bits to store the value M, so the running

time is exponential of input length.

4. Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is (5, 10, 3, 12, 5, 50, 6).
Ans:

[image: image5.png]Solve the matrix chain order for a specific problem. This can be done by computing MATRIX-
CHAIN-ORDER(p) where p = (5,10,3,12,5,50, 6) or simply using the equation:

i o0 ifi=j
m 1’ =
J minigr<iimli, kKl + mlk + 1,51 + pi—1pxp;t if1<j

The resulting table is the following:

N1 2] 3| 4 5 6

T [0] 150 | 330 | 405 | 1655 | 2010
2 0 | 360 | 330 | 2430 | 1950
3 0 | 180 | 930 | 1770
7 0 | 3000 | 1860
5 0 [1500
6 0

The table is computed simply by the fact that m[i,i] = 0 for all i. This information is used to
compute m[i,i+ 1] fori=1,...n— 1 an so on.

5. Show that a full parenthesization of an n-element expression has exactly n-1 pairs of parentheses.

Ans:

A pair of parentheses musts contain a operator and n elements must have n-1 operators, so a full parenthesization of an n-element expression has exactly n-1 pairs of parentheses.
6. Find a longest common subsequence of
S1 = a a b c d a e f
S2 = b e a d f.
Ans:

Let Li,j denote the length of the longest common subsequence of S1[1:i]. S1[1:j], 1(i(8 and 1(j(5, is computed as follows:

[image: image6.wmf]î

í

ì

=

=

+

=

-

-

-

-

]

[

]

[

if

}

,

max{

]

[

]

[

if

1

2

1

1

,

,

1

2

1

1

,

1

,

j

S

i

S

L

L

j

S

i

S

L

L

j

i

j

i

j

i

j

i

L0,0 = L0,j = Li,0 = 0, for 1(i(8 and 1(j(5.

The following table shows all values of Li, j’s.

	
	S1
	
	a
	a
	b
	c
	d
	a
	e
	f

	S2
	j i
	0
	1
	2
	3
	4
	5
	6
	7
	8

	
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	b
	1
	0
	0
	0
	1
	1
	1
	1
	1
	1

	e
	2
	0
	0
	0
	1
	1
	1
	1
	2
	2

	a
	3
	0
	1
	1
	1
	1
	1
	2
	2
	2

	d
	4
	0
	1
	1
	1
	1
	2
	2
	2
	2

	f
	5
	0
	1
	1
	1
	1
	2
	2
	2
	3

By tracing back in the above table, we find the longest common subsequence of S1 and S2 to be a d f (or b d f , b a f , b e f).

	
	S1
	
	a
	a
	b
	c
	d
	a
	e
	f

	S2
	j i
	0
	1
	2
	3
	4
	5
	6
	7
	8

	
	0
	0
	0
	[image: image16.png]& success

=>transform to Boolean formula for satisiable

(x=avx=b) A (x # avx # b) A (x # avx = bvsuccess) A (x
bvx = avsuccess) A (x # avx>bvfailure) A (x # bvx<av

failure) A (-failure v —success) A success

0
	0
	0
	0
	0
	0
	0

	b
	1
	0
	0
	0
	1
	1
	1
	1
	1
	1

	e
	2
	0
	0
	0
	1
	1
	1
	1
	2
	2

	a
	3
	0
	1
	1
	1
	1
	1
	2
	2
	2

	d
	4
	0
	1
	1
	1
	1
	2
	2
	2
	2

	f
	5
	0
	1
	1
	1
	1
	2
	2
	2
	3

7. Find an optimal binary search tree for a1, a2, …, a6, if the identifiers, in order, have probabilities 0.20, 0.10, 0.15, 0.20, 0.30, 0.05 respectively and all other identifiers have zero probability.
Ans:

Let C(i, j) denote the cost of an optimal binary tree containing ai to aj. Then,

C(1,3) = P1+P2+P3+min{C(1,0)+C(2,3), C(1,1)+C(3,3), C(1,2)+C(4,3)}
= 0.2+0.1+0.15+min{0.35, 0.2+0.15, 0.4}
= 0.8

(The root may be a1 or a2.)
C(2,4) = P2+P3+P4+min{C(2,1)+C(3,4), C(2,2)+C(4,4), C(2,3)+C(5,4)}
= 0.1+0.15+0.2+min{0.5, 0.3, 0.35}
= 0.75

(The root is a3.)
C(3,5) = P3+P4+P5+min{C(3,2)+C(4,5), C(3,3)+C(5,5), C(3,4)+C(6,5)}
= 0.15+0.2+0.3+min{0.7, 0.45, 0.5}
= 1.1

(The root is a4.)
C(4,6) = P4+P5+P6+min{C(4,3)+C(5,6), C(4,4)+C(6,6), C(4,5)+C(7,6)}
= 0.2+0.3+0.05+min{0.4, 0.2+0.05, 0.7}
= 0.8

(The root is a5.)

C(1,4) = P1+P2+P3+P4+min{C(1,0)+C(2,4), C(1,1)+C(3,4), C(1,2)+C(4,4),
 C(1,3)+C(5,4)}
= 0.2+0.1+0.15+0.2+min{0.75, 0.2+0.5, 0.4+0.2, 0.8}
= 1.25

(The root is a3.)
C(2,5) = P2+P3+P4+P5+min{C(2,1)+C(3,5), C(2,2)+C(4,5), C(2,3)+C(5,5),
 C(2,4)+C(6,5)}
= 0.1+0.15+0.2+0.3+min{1.1, 0.1+0.7, 0.35+0.3, 0.75}
= 1.4

(The root is a4.)
C(3,6) = P3+P4+P5+P6+min{C(3,2)+C(4,6), C(3,3)+C(5,6), C(3,4)+C(6,6),
 C(3,5)+C(7,6)}
= 0.15+0.2+0.3+0.05+min{0.8, 0.15+0.4, 0.5+0.05, 1.1}
= 1.25

(The root may be a3 or a4.)
C(1,5) = P1+P2+P3+P4+P5+min{C(1,0)+C(2,5), C(1,1)+C(3,5), C(1,2)+C(4,5),
 C(1,3)+C(5,5) , C(1,4)+C(6,5)}
= 0.2+0.1+0.15+0.2+0.3+min{1.4, 0.2+1.1, 0.4+0.7, 0.8+0.3, 1.25}
= 2.05

(The root may be a3 or a4.)
C(2,6) = P2+P3+P4+P5+P6+min{C(2,1)+C(3,6), C(2,2)+C(4,6), C(2,3)+C(5,6),
 C(2,4)+C(6,6) , C(2,5)+C(7,6)}
= 0.1+0.15+0.2+0.3+0.05+min{1.25, 0.9, 0.75, 0.8, 1.4}
= 1.55

(The root is a4.)

C(1,6) = P1+P2+P3+P4+P5+P6+min{C(1,0)+C(2,6), C(1,1)+C(3,6),
 C(1,2)+C(4,5), C(1,3)+C(5,6), C(1,4)+C(6,6) , C(1,5)+C(7,6)}
= 2.2

(The root may be a3 or a4.)

Based upon the above results, we obtain the optimal binary trees rooted at a3 or a4 as follows:

[image: image7.emf]3

1 5

6 4 2

[image: image8.emf]4

1 5

6 3

2

[image: image9.emf]4

2 5

6 3 1

8. Determine whether the following statements are correct or not
I. If a problem is NP-complete, then it cannot be solved by any deterministic polynomial algorithm in worst case.
II. If a problem is NP-complete, then we have not found any deterministic polynomial algorithm to solve it in worst cases.
III. If a problem is NP-complete, then it is unlikely that a polynomial algorithm can be found in the future to solve it in worst cases.
IV. In general, if a special case of a problem is NP-complete, then the general case problem can reduce to this special case.
V. NP-Hard is the hardest problem in NP, so we can’t reduce a NP-Hard problem to a NP problem.
[image: image10.png]Ans:
I. False, unless NP != P is proved.
II. True, because we don’t know whether NP=P or not.
III. True, because NP-Complete problems are hard.
IV. True, special case is NP-Complete, general case is NP-Complete, so general
case can reduce to special case.
V. False, NP-Complete is NP-Hard, NP-Complete can reduce to each other.

9. Consider the following problem. Given two input variables a and b, return “YES” if a > b and “NO” if otherwise. Design a nondeterministic polynomial algorithm to solve this problem. Transform it to a Boolean formula such that the algorithm returns “YES” if and only if the transformed Boolean formula is satisfiable.

[image: image11.png]Ans: x = choice(a,b)
if x =a and x > b then success
elseif x=band x <a then success
else failure
2> x=avx=bhb
& x =aimply x#b
& x =b imply x#a
& (x =a & x> b) imply success
& (x =b & x < a) imply success
& (x =a & x=b) imply failure
& (x =b & x=a) imply failure

& failure imply —success

10. Clause-monotone satisfiability problem: A formula is monotone if each clause of
it contains either only positive variables or only negative variables. For instance
F = (X1
[image: image12.wmf]Ú

X2) & (-X3) & (-X2
[image: image13.wmf]Ú

-X​​3)
is a monotone formula. Show that the problem of deciding whether a monotone formula is satisfiable or not is NP-complete.

[image: image14.png]Ans: We can reduce SAT to clause-monotone satisfiability, by reducing the clauses of
SAT with positive and negative variables. Each non-monotone clause could be
separated to positive clause (X;, X»...., Xm) and negative clause (-Xm+1, ~Xmt2,--» ~Xn)s
and add new positive y; to i-th positive clause and - y; to i-th negative clause. We have
to prove that if CM-SAT is satisfiable, then SAT is satisfiable, otherwise the SAT is
unsatisfiable. It is the truth that the ordinary clause is true, then the positive clause
or/and the negative clause are true. If only one side is true, then we can let the literal

yi or ~yj be true.

11. Halting problem is defined as follows: Given an arbitrary program with an arbitrary input data, will the program terminate or not? Please prove the halting problem is NP-Hard.

[image: image15.png]Ans: Using SAT to reduce to halting problem, then halting problem is NP-Hard. We
can transform the SAT problem to a program, which enumerates all possible
truth assignments, when it finds solution it halts; otherwise it goes into an

infinite loop. If this program will halt, the SAT is satisfiable, otherwise the SAT
is unsatisfiable.

12. Show that an otherwise polynomial-time algorithm that makes at most a constant number of calls to polynomial-time subroutines runs in polynomial time, but that a polynomial number of calls to polynomial-time subroutines may result in an exponential-time algorithm.

Ans:
Design and Analysis of Algorithms

Homework 3

Due: Jun 10, 2010

_1336482729.unknown

_1336482731.unknown

_1336482732.unknown

_1336482730.unknown

_1187708477.vsd
�

4

1

5

6

3

2

_1187785110.unknown

_1187708489.vsd
�

4

2

5

6

3

1

_1187708461.vsd
�

1

5

6

4

2

3

